Home
Class 12
MATHS
Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)...

Solve `y=tan^(-1)((sqrt(1+x^2)-1)/x)`

A

`tan^(-1)x`

B

`(1)/(2)tan^(-1)x`

C

`2tan^(-1)x`

D

`3tan^(-1)x`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((sqrt(1+x^2)-1)/x) , then y'(1) is equal to

The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) at x=0 is

The differential coefficient of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x is equal to..........

Find (dy)/(dx) when y=tan^(- 1)(x/(1+sqrt(1-x^2)))+sin[2tan^(- 1)sqrt((1-x)/(1+x))] ?

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to sin^(-1) (3x - 4x^(3)) is