Home
Class 12
MATHS
sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)...

`sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=`

A

`sin^(-1)x+sin^(-1)sqrt(x)`

B

`sin^(-1)x-sin^(-1)sqrt(x)`

C

`sin^(-1)sqrt(x)-sin^(-1)x`

D

`sin^(-1)(x-sqrt(x))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the following functions w.r.t. x: e^(sin^(-1)x) [frac {x+ sqrt (1-x^2)}{sqrt (1-x^2)}]

int tan(sin^(-1) x) dx=........... A) (1-x^2)^(1/2) + c B) -(1-x^2)^(1/2) + c C) frac{tan^(m)x}{sqrt (1-x^2} + c D) - sqrt (1-x^2) + c

d/(dx)[sin^(- 1)((sqrt(1+x)+sqrt(1-x))/2)]=

The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

Show that tan^-1(frac{sqrt(1+x)-sqrt(1-x)}{sqrt(1+x)+sqrt(1-x)}) = frac{pi}{4}-frac{1}{2}cos^-1x , for -frac{1}{sqrt2} le x le1

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

Derivative of sin^(-1)x w.r.t. cos^(-1) sqrt(1-x^(2)) is -

int sin^(-1) x dx=............ A) x sin^(-1) x + sqrt (1-x^2) + c B) x sin^(-1) x - sqrt (1- x^2) + c C) -x sin^(-1) x + sqrt (1-x^2) + c D) x sin^(-1) x + sqrt (x^2 - 1) + c