Home
Class 12
MATHS
cos^-1(4/5)+tan^-1(3/5)=...

`cos^-1(4/5)+tan^-1(3/5)=`

A

(a) `tan^(-1).(27)/(11)`

B

(b) `sin^(-1).(11)/(27)`

C

(c) `cos^(-1).(11)/(27)`

D

(d) `cot^(-1).(27)/(11)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The acute angle between the curve y^2=x and x^2=y at (1,1) is a) tan^-1(4/5) b) tan^-1(3/4) c) tan^-1(1) d) tan^-1(4/3)

Prove that : tan[cos^(-1)""((4)/(5))+tan^(-1)""((2)/(3))]=(17)/(6)

Find the value of the following: sin(cos^-1(frac{4}{5})+tan^-1(frac{5}{12}))

cos^(-1)(15/17)+2 tan^(-1)(1/5)=

Prove the following: sin^-1(frac{12}{13})+cos^-1(frac{4}{5})+tan^-1(frac{63}{16}) = pi

cos(tan^(-1)(3/4)) =

cos[2(tan^(-1)((1)/(5))+tan^(-1)5)] = ________.

Find the value of 4tan^(-1)(1/5)-tan^(-1)(1/70)+tan^(-1)(1/99)

If A = 9 tan^(-1) (sqrt2 - 1) and B = 3 sin^(-1)(1/3)+sin^(-1)(3/5) then