Home
Class 12
MATHS
cot^-1[(cosalpha)^(1/2)]-tan^-1[(cosalph...

`cot^-1[(cosalpha)^(1/2)]-tan^-1[(cosalpha)^(1/2)]=x \; then , sin x=`

A

(a) `tan^(2)((alpha)/(2))`

B

(b) `cot^(2)((alpha)/(2))`

C

(c) `tanalpha`

D

(d) `cot((alpha)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) , then the values of tan(theta/2) is

If: sin^(-1)(1/2)= tan^(-1)x , then x=

intx^(51)(tan^(- 1)x+cot^(- 1)x)dx=

If cos(cot^(-1)((1)/(2)))=cot(cos^(-1)x) , then a value of x is

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

If 3tan^(- 1)x+cot^(- 1)x=pi then x equals to ...

If cot(cos^(-1)x)=sec{tan^(-1)(a/sqrt(b^(2)-a^(2)))} then x equals

if cot^-1alpha+cot^-1beta=cot^-1x then x