Home
Class 12
MATHS
If 2sin^(2)x + sin^(2)2x =2 then x=...

If `2sin^(2)x + sin^(2)2x =2` then `x=`

A

(a) `pm(pi)/(6)`

B

(b) `pm(pi)/(4)`

C

(c) `(3pi)/(2)`

D

(d) none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

2cosx-cos3x-cos5x= ............... A) 16 cos ^(3) x sin ^(2) x B) 16 sin^(2) x cos ^(2) x C) 4 cos ^(2) x sin ^(2) x D) 4 sin ^(2) x cos ^(2)x

If tan x= (2b)/(a-c), a!=c, y = a cos^2 x +2b sin x*cos x + c sin^2x, z = a sin^2 x-2b sin x*cos x + c.cos^2x, then

int1/(cos2x+sin^2x) dx

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=

int(1+cos^(2)x)/(sin^(2)x)dx=

int(sin2x)/(1+sin^(2)x)dx=

Let B=2sin^2x-cos2x , then