Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation
`cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcos(pi/6)=sin^2(pi/6)`
in interval `((-pi)/2,pi/2)` is_________

A

(a) 0

B

(b) 1

C

(c) 2

D

(d) 3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation sinx-sin2x+sin3x=2cos^(2)x-cosx" in "(0,pi) is

cos(pi/5)cos((2pi)/5)cos((4pi)/5)cos((8pi)/5)=

cos^2(pi/6+theta)-sin^2(pi/6-theta)=

cos^2(pi/12)+cos^2(pi/4)+cos^2((5pi)/12)=

Show that cos^2(pi/4-x)+cos^2(pi/4+x)=1

If the sum of all the solutions of the equation 8 cosx.(cos(pi/6+x)cos(pi/6-x)-1/2)=1 in [0,pi] is k pi then k is equal to

Principal solutions of the equation sin 2x + cos 2x = 0 , where pi < x < 2pi

Using tables evaluate the following: cos^2 0+cos^2 (pi/6)+cos^2 (pi/3)+cos^2 (pi/2)

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

cos.(2pi)/(7)+cos.(4pi)/(7)+cos.(6pi)/(7)