Home
Class 12
MATHS
If 0 <= x < 2pi, then the number of real...

If `0 <= x < 2pi`, then the number of real values of x, which satisfy the equation
`cos x + cos 2x + cos 3x + cos 4x = 0`;

A

(a) 5

B

(b) 7

C

(c) 9

D

(d) 3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

cos 10x + cos 8x + 3 cos 4x + 3 cos 2x=

1+ cos 2x+ cos4x + cos 6x= ............. A) 2 cos x cos 2x cos 3x B) 4 sin x cos 2x cos 3x C) 4 cos x cos 2x cos 3x D) 2 sin x cos 2x cos 3x

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

Prove that (sin 3x - sin x) /( cos x - cos 3x) = cot 2x

The solution of the differential equation (sin x + cos x) dy + (cos x-sin x)dx = 0 is-

(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x

The expression (cos 6x+6cos 4x+15 cos 2x+10)/(cos 5x+5 cos 3x+10 cos x)