Home
Class 12
MATHS
If in a triangle ABC, 2cosA=sinBcosecC, ...

If in a triangle ABC, `2cosA=sinBcosecC`, then

A

(a) `a=b`

B

(b) `b=c`

C

(c) `c=a`

D

(d) `2a=bc`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

Solve the followimg In /_\ABC if cosA = sinB-cosC, then show that it is a right angled triangle.

In a triangle ABC, the value of sinA+sinB+sinC is

In a triangle ABC , if b^2 + c^2 = 3a^2 , then cotB + cotC-cotA is equal to

If in a triangle ABC, a=5, b=4 and A=pi/2 +B, then the value of tan ""C/2 is-

In triangle ABC , if cotA, cotB, cotC are in A.P. then show that a^2,b^2,c^2 are also in A.P

In a triangle ABC If ( 2 cos A)/a + ( cos B)/b + (2 cos C)/c = a/(bc) + b/(ca) , find the angle A.

If the angles of a triangle ABC are in A.P. , then