Home
Class 12
MATHS
If a, b, c are the sides of the triangle...

If a, b, c are the sides of the triangle ABC such that `a^(4) +b^(4) +c^(4)=2c^(2) (a^(2)+b^(2)),`
then the angle opposite to the side `c` is-

A

(a) `45^(@)or135^(@)`

B

(b) `30^(@)or100^(@)`

C

(c) `50^(@)or100^(@)`

D

(d) `60^(@)or120^(@)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If in DeltaABC,a^(4)+b^(4)+c^(4)=2a^(2)(b^(2)+c^(2)) , then angleA is

If the co-ordinates of the vertices A,B,C of the triangle ABC are (-4, 2) , (12,-2) and (8,6) respectively, then angle B=

If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

If a, b, c are sides of a triangle and a^2+b^2=c^2 , then name the type of triangle. a) Obtuse angled triangle b) Acute angled triangle c) Right angled triangle d) Equilateral triangle

The ratio of the sides of a triangle ABC is 1: sqrt3: 2 . The ratio A: B :C is

If the area of a triangle ABC is given by Delta=a^(2)-(b-c)^(2) , then tan.(A)/(2) is equal to

In a triangle ABC If ( 2 cos A)/a + ( cos B)/b + (2 cos C)/c = a/(bc) + b/(ca) , find the angle A.

If the sides of a triangle are b - 3a + 2c , a + 3b - 3c and 2a - b + c , then find its perimeter .

If in a triangle A B C ,acos^2(C/2)+c cos^2(A/2)=(3b)/2, then the sides a ,b , and c