Home
Class 12
MATHS
In triangleABC, (b+c)cosA+(c+a)cosB+(a+b...

In `triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=`

A

(a) 0

B

(b) 1

C

(c) `a+b+c`

D

(d) `2(a+b+c)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

Prove that, for /_\ABC , (b+c)cosA+(c+a)cosB+(a+b)cosC = a+b+c

In triangleABC, (cos2A)/(a^(2))-(cos2B)/(b^(2))=

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In triangleABC, (sinB)/(sin(A+B)) =

In triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=

In triangleABC,A+B+C=pi ,show that cosA+cosB-cosC=4cos(A/2)cos(B/2)sin(C/2)-1

In a triangle ABC , if (b+c) / 11 = (c+a) / 12 = (a+b) / 13 then cosA / l = cosB / m = cosC / n where l, m, n are least positive integer. Find the value of (l+m+n) .

In a triangleABC , if 1/(b+c)+1/(c+a)=3/(a+b+c) , then angleC =