Home
Class 12
MATHS
IN triangleABC, (cosC+cosA)/(c+a)+(cosB)...

IN `triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=`

A

(a) `(1)/(a)`

B

(b) `(1)/(b)`

C

(c) `(1)/(c )`

D

(d) `(c+a)/(b)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC, (cos2A)/(a^(2))-(cos2B)/(b^(2))=

In triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In triangleABC, (sinB)/(sin(A+B)) =

In triangleABC , If (b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then cosC=

In a triangleABC , if 1/(b+c)+1/(c+a)=3/(a+b+c) , then angleC =

In triangleABC, a^(2) sin2C + c^(2) sin2A=

In triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is