Home
Class 12
MATHS
If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, the...

If `sin^(-1)a+sin^(-1)b+sin^(-1)c=pi,` then the value of `asqrt((1-a^2))+bsqrt((1-b^2))+csqrt((1-c^2))` will be

A

(a) `2abc`

B

(b) `abc`

C

(c) `(1)/(2)abc`

D

(d) `(1)/(3)abc`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If, sin^(-1)x+sin ^(-1)""2x=(pi)/(3) , then value of x is

If "sin"^(-1)(1)/(3)+"sin"^(-1)(2)/(3)=sin^(-1)x , then the value of x is

If sin^-1(1-x)-2sin^-1x = frac{pi}{2} then find the value of x

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2) , then the value of x^(2)+y^(2)+z^(2)+2xyz is equal to

IF sintheta=1/2(a+1/a) then the value of sin 30 is

The value of sin^-1(sqrt3/2)-sin^-1(1/2) is

The value of sin^(-1)((2sqrt(2))/(3))+sin^(-1)((1)/(3)) is

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

Find the principal values of (a) sin^(-1)((sqrt(3))/2) (b) sin^(-1)(-1/2)