Home
Class 12
MATHS
If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3...

If `cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi,` then `xy + yz +zx` is equal to

A

(a) 0

B

(b) 1

C

(c) 3

D

(d) `-3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^-1x + cos^-1y+cos^-1z = pi then show that x^2+y^2+z^2+2xyz = 1

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

sin^(-1)x+cos^(-1)x is equal to

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to ............. A) 0 B) 1 C) -1 D) 2

If cos^(-1)x-"cos"^(-1)(y)/(2)=alpha , then 4x^(2)-4xy cos alpha+y^(2) is equal to :

If x +y+z = 180^@ , then cos2x + cos2y-cos2z is equal to

If cos y=x cos(a+y) with cos ne +- 1 , then dy/dx is equal to

tan(cos^-1 x) is equal to

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If y=(a^(cos^-1x))/(1+a^(cos^-1x)) and z= a^(cos^-1x) , then dy/dz=