Home
Class 12
MATHS
The number of real solutions of tan^(-...

The number of real solutions of
`tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)` is

A

(a) Zero

B

(b) One

C

(c) Two

D

(d) Infinite

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

If tan^(-1)x = sin^(-1)(3/sqrt(10)) , then: x=

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

A solution of equation tan ^(-1) ""(x-1)/(x-2) + tan ^(-1) ""(x+1)/(x+2)=(pi)/(4)

Solve for x : cot^(-1)x + sin^(-1)(1/sqrt(5)) = pi/4

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=

If y=tan^(-1) sqrt(x^Y(2)+y^(2))+cot^(-1) sqrt(x^(2)+y^(2)),"then " dy/dx=

The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

int_(-1)^(1)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx=