Home
Class 12
MATHS
tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=...

`tan((1)/(2).cos^(-1).(2)/(sqrt(5)))=`

A

(a) `2-sqrt(5)`

B

(b) `sqrt(5)-2`

C

(c) `(sqrt(5)-2)/(2)`

D

(d) `5-sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle made by the vector 3hati-4hatj+5hatk with the Z-axis is...a) (pi)/(4) b) cos^(-1)((1)/(sqrt(2))) c) 0 d) cos^(-1)((3)/(5sqrt(2)))

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Prove that : 2 tan^(-1)""(1)/(5)+sec^(-1)""(5sqrt(2))/(7)+2tan^(-1)""(1)/(8)=(pi)/(4)

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

cos[2cos^(-1)((1)/(5))+sin^(-1)((1)/(5))] =

(tan^(- 1)(sqrt(3))-sec^(- 1)(-2))/(cosec^(- 1)(-sqrt(2))+cos^(- 1)(-1/2)) =

If we consider only the principal values then the value inverse trigonometric functions then the value of tan(cos^(-1)(1/(5sqrt2)) -sin^(-1)(4/sqrt17)) is