Home
Class 12
MATHS
Given , 0lexle(pi)/(2), then the value o...

Given , `0lexle(pi)/(2)`, then the value of `tan["sin"^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]` is

A

(a) 1

B

(b) `sqrt(3)`

C

(c) `-1`

D

(d) `(1)/sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)[sin^(- 1)((sqrt(1+x)+sqrt(1-x))/2)]=

sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

The value of sin^-1(sqrt3/2)-sin^-1(1/2) is

Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to sin^(-1) (3x - 4x^(3)) is

The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))