Home
Class 12
MATHS
A solution of the equation tan^(-1)(1+...

A solution of the equation
`tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2)` is

A

(a) `x=1`

B

(b) `x=-1`

C

(c) `x=0`

D

(d) `x=pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

A solution of equation tan ^(-1) ""(x-1)/(x-2) + tan ^(-1) ""(x+1)/(x+2)=(pi)/(4)

tan^(-1)1+tan^(-1)2+tan^(-1)3=

The general solution of the equation tan ^(2) x=1 is

tan^(-1) (cot x) +cot^(-1)(tan x) =

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2) is

The general solution of the differential equation y dx+(1+x^2) tan^-1 x dy=0 is .

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

tan^(-1)""(x)/(y)-tan^(-1)""(x-y)/(x+y)=