Home
Class 12
MATHS
tan^(-1)""(x)/(y)-tan^(-1)""(x-y)/(x+y)=...

`tan^(-1)""(x)/(y)-tan^(-1)""(x-y)/(x+y)=`

A

(a) `(pi)/(4)`

B

(b) `pi`

C

(c) `0`

D

(d) `(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

A solution of equation tan ^(-1) ""(x-1)/(x-2) + tan ^(-1) ""(x+1)/(x+2)=(pi)/(4)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is :

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

If x^2 + y^2 + z^2 = r^2 and x, y, z > 0 , then tan^-1((xy)/(zr))+tan^-1((yz)/(xr))+tan^-1((zx)/(yr)) is equal to

If c_j >0 for i=1,2,..., n , prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+...+tan^(-1)(1/(c_n))=tan^(-1)(x/y)

If y=tan^(-1) ((1+x)/(1-x)) then (dy)/(dx)=

If y=tan^(-1)(1/(1+x+x^2))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7))+ ....+ upto n terms, then find the value of y^(prime)(0)dot

The solution of differential equation (1+y^(2))+(x-e^(tan^(-1)y))(dy)/(dx)=0 , is

If tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a show that (dy)/(dx)=(x(1-tana))/(2y(1+tana))

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=