Home
Class 12
MATHS
Prove that: cot^(-1)((ab+1)/(a-b))+co...

Prove that:
`cot^(-1)((ab+1)/(a-b))+cot^(-1)((bc+1)/(b-c))+cot^(-1)((ca+1)/(c-a))=0`

A

0

B

1

C

`(pi)/(4)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2cot^(- 1)(1/2)-cot^(- 1)(4/3) is

tan^(-1) (cot x) +cot^(-1)(tan x) =

Cot^(-1)(-sqrt(3))

cot^(-1)((sqrt(1+x^(2))-1)/(x)) =

The value of cot [((pi)/(4))-2 cot^(-1)(3)] is

sin^(-1)""1/sqrt5+cot^(-1)3=

Prove that : (1+ (1)/(tan^2 A)) (1 +(1)/(cot^2 A)) = (1)/(sin^2 A - sin^4 A)

Prove that (1+(1)/(tan^2 A)) (1+(1)/(cot^2A)) = (1)/(sin^2 A- sin^4 A)

If sin^(-1)(sin.(33pi)/(7))+cos^(-1)(cos.(46pi)/(7)) + tan^(-1)(-tan.(13pi)/(8))+cot^(-1)(-cot.(19pi)/(8))=(api)/(b) , where a and b are constant, then (a+b) is equal to

(1 - cot^(2)45^(@))/(1 + cot^(2)45^(@)) =