Home
Class 12
MATHS
If tan^-1x+tan^-1y+tan^-1z = frac{pi}{2}...

If `tan^-1x+tan^-1y+tan^-1z = frac{pi}{2}`, then show that `xy+xy+zx = 1`

A

`x+y+z-xyz=0`

B

`x+y+z+xyz=0`

C

`xy+yz+zx+1=0`

D

`xy+yz+zx-1=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^-1 2x+tan^-1 3x = frac{pi}{4} , then find the value of x.

tan^(-1)1+tan^(-1)2+tan^(-1)3=

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

show that: Tan^-1x+tan^-1y = tan^-1(frac{x+y}{1-xy})

Select the correct option from the given alternatives: If tan^-1(2x)+tan^-1(3x) = frac{pi}{4} , then x = A) -1 B) frac{1}{6} C) frac{2}{6} D) frac{3}{2}

Find the value of tan^-1(tan(frac{pi}{6}))

If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal to

If tan theta + 1/ tan theta = 2, then show that tan^2 theta + 1/tan^2 theta= 2 .