Home
Class 12
MATHS
Find the value of sin^(-1)(cos(sin^(-1)x...

Find the value of `sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))`

A

(a) `-(pi)/(2)`

B

(b) `(pi)/(4)`

C

(c) `(pi)/(2)`

D

(d) 0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)

The value of sin^(-1)(cos.(3pi)/(5)) is

The value of cos^(-1)(cos 12)-sin^(-1)(sin 14) is

int(sin^(-1)x+cos^(-1)x)dx=

The value of cos^(-1)("cos"(5pi)/(3))+sin^(-1)("sin"(5pi)/(3)) is -

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

If x gt 0 , then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

sin^(-1)x+cos^(-1)x is equal to

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is