Home
Class 12
MATHS
The value of sin^(-1)((2sqrt(2))/(3))+si...

The value of `sin^(-1)((2sqrt(2))/(3))+sin^(-1)((1)/(3))` is

A

(a) `(pi)/(4)`

B

(b) `(pi)/(6)`

C

(c) `(2pi)/(3)`

D

(d) `(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(cos.(3pi)/(5)) is

Find the principal values of (a) sin^(-1)((sqrt(3))/2) (b) sin^(-1)(-1/2)

sin(3sin^(-1)((2)/(5))) =

The value of cos^(-1)("cos"(5pi)/(3))+sin^(-1)("sin"(5pi)/(3)) is -

The value of sin^-1(sqrt3/2)-sin^-1(1/2) is

The principle value of sin ^(-1)(sin ""(2pi)/(3)) is

Given , 0lexle(pi)/(2) , then the value of tan["sin"^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x] is

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

sin[3sin^(-1)((1)/(5))] is equal to