Home
Class 12
MATHS
Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1...

Let `tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2))` , where `|x|<1/(sqrt(3))` . Then a value of y is :

A

`(3x-x^(3))/(1-3x^(2))`

B

`(3x+x^(3))/(1-3x^(2))`

C

`(3x-x^(3))/(1+3x^(2))`

D

`(3x+x^(3))/(1+3x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int(e^(tan^(-1)x))/(1+x^2)dx

y=tan^(-1)((3a^2x-x^3)/(a(a^2-3x^2)))

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

int(e^(tan^-1x))/(1+x^2)dx =

tan^(-1)""(x)/(y)-tan^(-1)""(x-y)/(x+y)=

If y=tan^(-1) ((1+x)/(1-x)) then (dy)/(dx)=

sin^(2)(2tan^(-1)sqrt((1+x)/(1-x)))="____","where "-1lexlt1