Home
Class 12
MATHS
The value of theta lying between theta=0...

The value of `theta` lying between `theta=0` and `theta=pi/2` and satisfying the equation
`|[1+sin^2theta,cos^2theta,4sin4theta],[sin^2theta,1+cos^2theta,4sin4theta],[sin^2theta,cos^2theta,1+4sin4theta]|=0` are

A

(a) `(7pi)/(24)or(11pi)/(24)`

B

(b) `(5pi)/(24)`

C

(c) `(pi)/(24)`

D

(d) `(7pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

|(sin^2theta,cos^2theta),(cos^2theta,sin^2theta)|=

(sintheta+sin 2theta)/(1+costheta+cos2theta)=

sin(pi+theta)sin(pi-theta)cosec^2theta=

2cos^2theta-2sin^2theta=1 then theta =

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

Prove the following: sin^4theta+cos^4theta=1-2sin^2thetacos^2theta

Prove the following: sin^4theta+2sin^2thetacos^2theta=1-Cos^4theta

Values of theta satisfying the eqation sintheta+sin7theta=sin4theta for theta in (0, pi/2) are

Prove the following: sin^8theta-cos^8theta=(sin^2theta-cos^2theta)(1-2sin^2thetacos^2theta)