Home
Class 12
MATHS
If ((x+1)^(2))/(x^(3)+x)=(A)/(x)+(Bx+C)/...

If `((x+1)^(2))/(x^(3)+x)=(A)/(x)+(Bx+C)/(x^(2)+1)`, then
`cosec^(-1)((1)/(A))+cot^(-1).(1)/(B)+sec^(-1)C` = _________

A

(a) `(pi)/(6)`

B

(b) `(5pi)/(6)`

C

(c) `(pi)/(2)`

D

(d) 0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec^-1x=cosec^-1y ,then cos^(- 1)(1/x)=cos^(- 1)(1/y)=

cot^(-1)((sqrt(1+x^(2))-1)/(x)) =

If y="cosec"^(-1)((x^(2)+1)/(x^(2)-1))+cos^(-1) ((x^(2)-1)/(x^(2)+1)),"then " (dy)/(dx)=

d/(dx)[cosec^-1((1+x^2)/(2x))]=

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=