Home
Class 12
MATHS
If in DeltaABC,a^(4)+b^(4)+c^(4)=2a^(2)(...

If in `DeltaABC,a^(4)+b^(4)+c^(4)=2a^(2)(b^(2)+c^(2))`, then `angleA` is

A

(a) `30^(@)`

B

(b) `45^(@)`

C

(c) `60^(@)`

D

(d) `90^(@)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2c^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

If in a DeltaABC,a^(2)cos^(2)A-b^(2)-c^(2)=0 , then

If in DeltaABC,2b^(2)=a^(2)+c^(2),"then "(sin3B)/(sinB) =

In DeltaABC,(a-b)^(2)cos^(2).(C)/(2)+(a+b)^(2)sin^(2).(C)/(2) =

In DeltaABC , if sin^(2)A+sin^(2)B=sin^(2)C and l(AB)=10, then the maximum value of the area of DeltaABC is

In DeltaABC,(cos.(1)/(2)(B-C))/(sin.(1)/(2)A) =

In a DeltaABC , if 2s=a+b+cand(s-b)(s-c)=xsin^(2).(A)/(2) , then x =

In DeltaABC , if A-=(3,2,6), B-=(1,4,5) and C-=(3,5,3) , then m angleABC=

If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to