Home
Class 12
MATHS
If cos^(-1)x-"cos"^(-1)(y)/(2)=alpha, t...

If `cos^(-1)x-"cos"^(-1)(y)/(2)=alpha`, then `4x^(2)-4xy cos alpha+y^(2)` is equal to :

A

(a) `-4sin^(2)alpha`

B

(b) `4sin^(2)alpha`

C

(c) 4

D

(d) `2sin^(2)alpha`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

cos ^(2) alpha + cos ^(2) (alpha + 120^(@)) + cos ^(2) (alpha - 120^(@)) is equal to

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal to

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to

If tan^-1(x^2+y^2)=alpha,then(dy)/(dx) is equal to

cos^(- 1)((x^2-y^2)/(x^2+y^2))=loga find dy/dx

If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

8sin(x/8)cos(x/2)cos(x/4)cos(x/8) is equal to

If x +y+z = 180^@ , then cos2x + cos2y-cos2z is equal to