Home
Class 12
MATHS
Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13...

Prove that: `sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2`

A

(a) 0

B

(b) `(pi)/(2)`

C

(c) `pi`

D

(d) `sin^(-1)((63)/(65))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

sin(3sin^(-1)((2)/(5))) =

Prove that: sin^(2) (pi/8) +sin^(2) ((3pi)/8) +sin^(2)((5pi)/8)+sin^(2)((7pi)/8)=2

cos[2cos^(-1)((1)/(5))+sin^(-1)((1)/(5))] =

cos (sin^(-1) . 5/13) =

Prove that sin^2(pi/4-x)+sin^2(pi/4+x)=1

Prove each of the following sin^(- 1)(3/5)+sin^(- 1)(8/17)=sin^(- 1)(77/85)

Prove that sin(45^@+A)sin(45^@-A)=1/2cos2A.

sin[3sin^(-1)((1)/(5))] is equal to

Prove that (i) " 2sin " (5pi)/(12) " sin " (pi)/(12)=(1)/(2) (ii) " 2 cos " (5pi)/(12) " cos " .(pi)/(12)=(1)/(2) (iii) " 2 sin ".(5pi)/(12) " cos " (pi)/(2) = ((2+sqrt(3))/(2))