Home
Class 12
MATHS
If the angle theta is acute, then the ac...

If the angle `theta` is acute, then the acute angle between
`x^(2)(cos theta-sin theta)+2xy cos theta+y^(2)(cos theta+sin theta)=0,` is

A

(a) `2 theta`

B

(b) `(theta)/3`

C

(c) `theta`

D

(d) `(theta)/2`

Text Solution

Verified by Experts

The correct Answer is:
C

NA
Promotional Banner

Similar Questions

Explore conceptually related problems

sin theta/(1+cos theta)=

prove that sin theta + tan theta = (cos theta) / (1-sin theta)

2cos^2theta-2sin^2theta=1 then theta =

If cos theta + sec theta =2 , then sec^(2)theta - sin^(2)theta=

Find the acute angle theta such that 2cos^2theta=3sintheta .

If cos theta + sin theta = sqrt2 cos theta " then" cos theta - sin theta is equal to

prove that: (i) (sin^2 theta)/ (cos theta) +cos theta =sec theta

Prove that : (sin^(2) theta)/(cos theta ) + cos theta = sec theta

|(sin^2theta,cos^2theta),(cos^2theta,sin^2theta)|=