Home
Class 12
MATHS
The difference of the tangents of the an...

The difference of the tangents of the angles, which the lines
`(tan^(2) alpha+cos^(2) alpha)x^(2)-2xy tan alpha + sin^(2) alpha" "y^(2)=0` make with the X-axis, is

A

(a) 1

B

(b) 2

C

(c) 3

D

(d) 4

Text Solution

Verified by Experts

The correct Answer is:
B

NA
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

cos ^(2) alpha + cos ^(2) (alpha + 120^(@)) + cos ^(2) (alpha - 120^(@)) is equal to

The angle between the lines given by the equation alphay^(2)+(1-alpha^(2))xy-alphax^(2)=0 is same as the angle between the lines

2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=

The angle between the lines x cos alpha + y sinalpha=a and xsinbeta- ycosbeta = a is

If sintheta=3sin(theta+2alpha) , then the value of tan(theta+alpha)+2 tan alpha is

Eliminate alpha , if x = r cos alpha , y = r sin alpha .

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If alpha + beta - gamma =pi, then sin ^(2) alpha + sin^(2) beta- sin ^(2) gamma=

The length of the latus rectum of the parabola whose focus is (u^2/(2g) sin2alpha, -u^2/(2g) cos2alpha) and directrix is y=u^2/(2g) ,is