Home
Class 12
MATHS
If the lines (x-1)/(k)=(y+1)/(3)=(z-1)/(...

If the lines `(x-1)/(k)=(y+1)/(3)=(z-1)/(4)and(x-3)/(1)=(2y-9)/(2k)=(z)/(1)` intersect,
then find the value of k

A

(a) `2`

B

(b) `-4`

C

(c) `4`

D

(d) `-2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

The lines (x-1)/(2)=(y+1)/(2)=(z-1)/(4) and (x-3)/(1)=(y-6)/(2)=(z)/(1) intersect each other at point

The lines (x-2)/(1)=(y-3)/(2)=(z-4)/(3) and (x-1)/(-5)=(y-2)/(1)=(z-1)/(1) are

Two lines (x)/(1)=(y)/(2)=(z)/(3)and(x+1)/(1)=(y+2)/(2)=(z+3)/(3) are

If the two lines (x-1)/(3)=(y-k)/(6)=(z+1)/(-2)and(x-2)/(-1)=(y-2)/(4)=(z+1)/(-1) intersect at a point, then k is

If the lines (x-2)/(1)=(y-4)/(4)=(z-6)/(k) and (x+1)/(3)=(y+3)/(5)=(z+5)/(7) are coplanar, then the value of k is

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if