Home
Class 12
MATHS
The lines (x-1)/(1)=(y-1)/(2)=(z-1)/(3) ...

The lines `(x-1)/(1)=(y-1)/(2)=(z-1)/(3)` and
`(x-4)/(2)=(y-6)/(3)=(z-7)/(3)` are coplanar.
Their point of intersection is

A

(a) `(4,6,7)`

B

(b) `(2,3,4)`

C

(c) `(1,1,1)`

D

(d) `(4,7,10)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Lines (x)/(1)=(y-2)/(2)=(z+3)/(3)" and "(x-2)/(2)=(y-6)/(3)=(z-3)/(4) are

The lines (x-2)/(1)=(y-3)/(2)=(z-4)/(3) and (x-1)/(-5)=(y-2)/(1)=(z-1)/(1) are

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-1)/(3)=(y-1)/(-1),z=-1 and (x-4)/(2)=(z+1)/(3),y=0

The lines (x-1)/(2)=(y+1)/(2)=(z-1)/(4) and (x-3)/(1)=(y-6)/(2)=(z)/(1) intersect each other at point

If the lines (x-2)/(1)=(y-4)/(4)=(z-6)/(k) and (x+1)/(3)=(y+3)/(5)=(z+5)/(7) are coplanar, then the value of k is

The lines (x-3)/(1)=(y-1)/(2)=(z-3)/(-lambda) and (x-1)/(lambda)=(y-2)/(3)=(z-1)/(4) are coplanar, if value of lambda is