Home
Class 12
MATHS
Minimize z=sum(j=1)^(n)" "sum(i=1)^(m)c...

Minimize `z=sum_(j=1)^(n)" "sum_(i=1)^(m)c_("ij ")x_("ij")`
Subject to : `sum_(j=1)^(n)x_("ij")=a_(i),i=1,..........,m`
`sum_(i=1)^(m)x_("ij")=b_(i),j=1,..........,n`
is a LPP with number of constraints

A

(a) m + n

B

(b) `m - n `

C

(c) mn

D

(d) `(m)/(n)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find sum_(n=1)^oo (0.4)^n

Find sum_(r=1)^n (2r - 8)

Find: sum_(n=1)^oo 0.4^n

Find sum_(r=1)^n (2/3)^r

Evaluate: sum_(r=1)^n (8r - 7)

Find sum_(r=1)^n = r(r - 3) (r - 2)

"^45C_8 + sum_(k=1)^7 "^(52-k)C_7 + sum_(i=1)^5 "^(57-i)C_(50-i) =

Find sum_(r=1)^n r(r - 1) (r + 5)

Find the sum sum_(r=1)^n (r + 1)(2r - 1)