Home
Class 12
MATHS
If f(x) is continuous at x=pi/4, where f...

If `f(x)` is continuous at `x=pi/4`, where `f(x)=(1-tanx)/(1-sqrt(2)sin x)`, for `x!= pi/4`, then `f(pi/4)=`

A

(a) 2

B

(b) `2sqrt(2)`

C

(c) 4

D

(d) `4sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=a, where f(x) = (sqrt(x)-sqrt(a) + sqrt(x-a))/sqrt(x^(2) -a^(2)) , for x ne a , then f(a)=