Home
Class 12
MATHS
If f(x)=(x^(2)-1)/x^(3), then intf(x)dx ...

If `f(x)=(x^(2)-1)/x^(3)`, then `intf(x)dx` is

A

`1/x^(2)+1/(2x^(3))+c`

B

`logx+1/(2x^(2))+c`

C

`-1/x^(2)+3/x^(4)+c`

D

`logx+1/(2x^(3))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to

If f(x) and g(x) are two functions with g (x) = x - 1/x and fog (x) = x^(3) -1/x^(3) then f(x) is

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If f(x) is defined on [-2, 2] by f(x) = 4x^2 – 3x + 1 and g(x) = (f(-x)-f(x))/(x^2+3) then int_(-2)^2 g(x) dx is equal to

If f(x)=f(2-x) then int_(0. 5)^1.5 xf(x)dx=

If f(x) = (x-1)/(x+1) , then f(2x) is equal to

If f(x)=(1)/(1-x) , then int(f_(o) f_(o)f)(x)dx=

If f(x)=x " and " g(x)=sinx , then intf(x)*g(x)dx=

if f(x)=|x-1| then int_(0)^(2)f(x)dx is