Home
Class 12
MATHS
int(log(logx))/(x.logx)dx=...

`int(log(logx))/(x.logx)dx=`

A

(a) `[log(logx)]^(2)+c`

B

(b) `1/2[log(logx)]^(2)+c`

C

(c) `log(logx)+c`

D

(d) `xlog(logx)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate the following : int(log(logx))/(x)*dx

intlogx(logx+2)dx=

Knowledge Check

  • int(logx)/((logex)^(2))*dx=

    A
    `(x)/(1+logx)+c`
    B
    `x(1+logx)+c`
    C
    `(1)/(1+logx)+c`
    D
    `(1)/(1-logx)+c`
  • Similar Questions

    Explore conceptually related problems

    int[log(logx)+(1)/((logx)^(2))]*dx .

    int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

    int ( log (log x))/( x ) dx = int log (log x ) (1)/(x) dx

    int(tan(logx))/(x)dx=?

    Evaluate the following : int(sin(logx)^(2))/(x)*log*x*dx

    int(logx)/(x^3)dx=

    int(logx)/(x^3)dx=