Home
Class 12
MATHS
If inte^(x)sinxdx=(u)/(2)e^(x)+c, then u...

If `inte^(x)sinxdx=(u)/(2)e^(x)+c`, then `u=

A

(a) `sinx-cosx`

B

(b) `-cosxe^(x)+e^(x)sinx+c`

C

(c) `e^(x)/(2x)sin^(2)x+c`

D

(d) `e^(x)(-sinx-cosx)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(x)tan^(2)(e^(x))dx=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

int(dx)/(e^(2x)-3e^(x))=

int(e^x)/((1+e^x)(2+e^x))dx

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to