Home
Class 12
MATHS
int9^(log(3)(secx))dx=...

`int9^(log_(3)(secx))dx=`

A

(a) `secx.tanx+c`

B

(b) `cotx+c`

C

(c) `tanx+c`

D

(d) `sec^(2)x+tan^(2)x+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

intsinxlog(secx+tanx)dx=

int(cotx)/(log(sinx))dx

intsecxlog(secx+tanx)dx

Differentiate the following w.r.t. x : 9^(\log_(3) (sin x)) + 25^(log_(5) (cos x))

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

int(tanx)/(secx+tanx)dx=

intx^(2)secx^(3)dx=

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int(sec^2(log x))/x dx =