Home
Class 12
MATHS
int9^(log(3)(secx))dx=...

`int9^(log_(3)(secx))dx=`

A

(a) `secx.tanx+c`

B

(b) `cotx+c`

C

(c) `tanx+c`

D

(d) `sec^(2)x+tan^(2)x+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

intsinxlog(secx+tanx)dx=

int(cotx)/(log(sinx))dx

Knowledge Check

  • int(log(3x))/(xlog(9x))*dx=

    A
    `log(3x)-log(9x)+c`
    B
    `log(x)-(log3)*log(log9x)+c`
    C
    `log9-(logx)*log(log3x)+c`
    D
    `log(x)+(log3)*log(log9x)+c`
  • Similar Questions

    Explore conceptually related problems

    intsecxlog(secx+tanx)dx

    Differentiate the following w.r.t. x : 9^(\log_(3) (sin x)) + 25^(log_(5) (cos x))

    If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

    int(tanx)/(secx+tanx)dx=

    intx^(2)secx^(3)dx=

    If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

    int(sec^2(log x))/x dx =