Home
Class 12
MATHS
int((1+tan)/(1-tanx))^(2)dx=...

`int((1+tan)/(1-tanx))^(2)dx=`

A

(a) `1/3log[(cosx-sinx)]^(3)+c`

B

(b) `tan(x-pi/4)+c`

C

(c) `tan(pi/4+x)-x+c`

D

(d) `2((1+sec^(2)x)/(1-sec^(2)x))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int((1+tanx)/(1-tanx))dx

inte^(x)(1+tanx+tan^(2)x)dx=

int(e^(tan^-1x))/(1+x^2)dx =

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

int(secx+tanx)^(2)dx=

Prove the following: (frac(1+tanx)(1-tanx))^2=(frac(tan(pi/4+x))(tan(pi/4-x)))

int(e^(tan^(-1)x))/(1+x^2)dx

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

int(1)/(cos^(2)x(1-tanx)^(2)). dx=