Home
Class 12
MATHS
int(f'(x))/([f(x)]^(2))dx=...

`int(f'(x))/([f(x)]^(2))dx=`

A

`-[f(x)]^(-1)+c`

B

`log[f(x)]+c`

C

`e^(f(x))+c`

D

`-log[f(x)]+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If f(x)+f(3-x)=0 , then int_(0)^(3)1/(1+2^(f(x)))dx=

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

int [f(x)+xf'(x)]dx =

int_(0)^(a)f(x)dx=

If f(x)=(1)/(1-x) , then int(f_(o) f_(o)f)(x)dx=