Home
Class 12
MATHS
int1/x^(3)[logx^(x)]^(2)dx=...

`int1/x^(3)[logx^(x)]^(2)dx=`

A

(a) `1/x^(3)(logx)+x+c`

B

(b) `1/3(logx)^(3)+c`

C

(c) `3log(logx)+c`

D

(d) `x^(3)(logx)^(3)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int32x^(3)(logx)^(2) dx is equal to

int1/(loga)(a^(x)cosa^(x))dx=

int1/(x-x^(3))dx=

If P(x)=intx^(3)/(x^(3)-x^(2))dx, Q(x)=int1/(x^(3)-x^(2))dx " and " (P+Q)(2)=5/2, then P(3)+Q(3)=

int1/((e^(2x)+e^(-2x))^(2))dx=

int2^(x).3^(x+1).4^(x+2)dx=

int x^3logx dx =

int1/(x^(2)-x^(3))dx=