Home
Class 12
MATHS
inta^(a^(x)).a^(x)dx=...

`inta^(a^(x)).a^(x)dx=`

A

(a) `a^(a^(x))/(loga)^(2)+c`

B

(b) `a^(a^(x))(loga)^(2)+c`

C

(c) `a^(a^(x))/(loga)+c`

D

(b) `a^(a^(x))loga+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int1/(loga)(a^(x)cosa^(x))dx=

inte^(x)tan^(2)(e^(x))dx=

int(tan(log x))/x dx =

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

Prove that \int_{0}^(2a) f(x) dx = \int_{0}^a [f(x) + f(2a-x)] dx

intx/((x-1)(x-2))dx

int x/((x-2)(x-1)) dx =

int [f(x)+xf'(x)]dx =