Home
Class 12
MATHS
int1/((e^(2x)+e^(-2x))^(2))dx=...

`int1/((e^(2x)+e^(-2x))^(2))dx=`

A

(a) `(-1)/(4(e^(4x)+1))+c`

B

(b) `1/(4(e^(4x)+1))+c`

C

(c) `(-1)/(2(e^(4x)+1))+c`

D

(d) `1/(2(e^(4x)+1))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^(2x)-3e^(x))=

int_(0)^(pi//2) e^(x^(2))/(e^(x^(2)+ e^((pi/2-x)^(2))))dx=

int_(1)^(2) e^(x)(1/x-1/x^(2))dx=

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

int(dx)/(e^(x)+1-2e^(-x))=

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to