Home
Class 12
MATHS
inte^(x)tan^(2)(e^(x))dx=...

`inte^(x)tan^(2)(e^(x))dx=`

A

(a) `tan(e^(x))-x+c`

B

(b) `e^(x)[tan(e^(x))-1]+c`

C

(c) `sec(e^(x))+c`

D

(d) `tan(e^(x))-e^(x)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(x)(1+tanx+tan^(2)x)dx=

int(dx)/(e^(2x)-3e^(x))=

int(x+3)/(x+4)^(2)e^(x)dx is equal to

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

inte^(x)/sqrt(e^(2x)+4e^(x)+13)dx=

int(e^x)/((1+e^x)(2+e^x))dx