Home
Class 12
MATHS
int(dx)/(xsqrt(1-(logx)^(2))=...

`int(dx)/(xsqrt(1-(logx)^(2))=`

A

`cos^(-1)(logx)+c`

B

`xlog(1-x^(2))+c`

C

`sin^(-1)(logx)+c`

D

`1/2cos^(-1)(logx)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(x[(logx)^(2)+4logx-1])=

int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=

The value of int(dx)/(xsqrt(x^(4)-1)) is

int(x+1sqrt(1-x^(2)))/(xsqrt(1-x^(2)))dx=

int{(logx-1)/(1+(logx)^(2))}^(2) dx is equal to

Evaluate the following integrals: int(logx)/((1+logx)^(2))dx

int(dx)/(x.logx.log(logx))=

int((x+1)(x+logx)^(2))/(x)dx=?