Home
Class 12
MATHS
intsqrt(x)/(1+x)dx=...

`intsqrt(x)/(1+x)dx=`

A

(a) `sqrt(x)-tan^(-1)sqrt(x)+c`

B

(b) `2(sqrt(x)-tan^(-1)sqrt(x))+c`

C

(c) `2(sqrt(x)+tan^(-1)sqrt(x))+c`

D

(d) `sqrt(1+x)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

intsqrt(e^(x)-1)dx=

intsqrt((1+x)/(1-x))dx=?

intsqrt(1+sin2x)dx=

intsqrt((a-x)/(a+x))dx

If intsqrt((x-5)/(x-7))dx = A sqrt(x^(2) - 12 x + 35) + log|x-6 +sqrt(x^(2)-12x+35)| + C , then

int sqrt((1+x)/(1-x)) dx =

int_(-1)^(1)sqrt((1-x)/(1+x))dx=

inttan^(-1)sqrt((1-x)/(1+x))dx=