Home
Class 12
MATHS
inte^(log(1+1/x^(2)))/(x^(2)+1/x^(2))dx=...

`inte^(log(1+1/x^(2)))/(x^(2)+1/x^(2))dx=`

A

(a) `1/sqrt(2)tan^(-1)((x^(2)-1)/(xsqrt(2)))+c`

B

(b) `1/sqrt(2)log((x^(2)+1)/(xsqrt(2)))+c`

C

(c) `(-1)/sqrt(2)tan^(-1)(x-1/x)+c`

D

(d) `1/sqrt(2)tan^(-1)(x-1/x)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int((1+x)^2)/(x(1+x^2))dx

int(x+1)/x^(1/2)dx=

int(sec^2(log x))/x dx =

int_0^1log(1+x)/(1+x^2)dx

If int((2x^(2)+1)dx)/((x^(2)-4)(x^(2)-1))=log[((x+1)/(x-1))^(a)((x-2)/(x+2))^(b)]+c , then the values of a and b are respectively

int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =

The value of int_0^1(8 log(1+x))/(1+x^(2)) dx is a) πlog2 b) π/8log2 c) π/2log2 d) log2

int(dx)/((x^(2)-1)(1-2x))=