Home
Class 12
MATHS
int (x^2-1)/((x^2+1) sqrt(x^4+1)) \ dx =...

`int (x^2-1)/((x^2+1) sqrt(x^4+1)) \ dx =`

A

(a) `1/sqrt(2)sec^(-1)((x^(2)+1)/sqrt(2))+c`

B

(b) `1/sqrt(2)sec^(-1)((x^(2)+1)/(xsqrt(2)))+c`

C

(c) `sec^(-1)((x^(2)+1)/(xsqrt(2)))+c`

D

(d) `sec^(-1)((x^(2)+1)/sqrt(2))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int (x^4+1)/(x^2+1)dx

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int(x-1)/((x+1)^2) dx =

Evaluate: int1/((x^2-1)sqrt(x^2+1))\ dx

Evaluate: int(x-1)/((x+1)sqrt(x^3+x^2+x))\ dx

int(x^2-1)/(x^4+3x^2+1)dx(x >0) is

int1/((x-1)sqrt(x^(2)-4))dx=

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Evaluate: int(1+x^2)/(sqrt(1-x^2))\ dx