Home
Class 12
MATHS
inte^(x)/sqrt(e^(2x)+4e^(x)+13)dx=...

`inte^(x)/sqrt(e^(2x)+4e^(x)+13)dx=`

A

`logabs(e^(x)+2+sqrt(e^(2x)+4e^(x)+13))+c`

B

`logabs(e^(2x)+4+sqrt(e^(2x)+4e^(x)+13))+c`

C

`logabs(e^(x)+2+sqrt(e^(2x)+2e^(x)+13))+c`

D

`logabs(e^(x)+4+sqrt(e^(2x)+e^(x)+13))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

int(dx)/(e^(2x)-3e^(x))=

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int(dx)/(e^(x)+1-2e^(-x))=