Home
Class 12
MATHS
int(dx)/(x[(logx)^(2)+4logx-1])=...

`int(dx)/(x[(logx)^(2)+4logx-1])=`

A

(a) `1/(2sqrt(5))logabs((logx+2-sqrt(5))/(logx+2+sqrt(5)))+c`

B

(b) `1/sqrt(5)logabs((logx+2-sqrt(5))/(logx+2+sqrt(5)))+c`

C

(c) `1/(2sqrt(5))logabs((logx+2+sqrt(5))/(logx+2-sqrt(5)))+c`

D

(d) `1/sqrt(5)logabs((logx+2+sqrt(5))/(logx+2-sqrt(5)))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(x.logx.log(logx))=

int(dx)/(xsqrt(1-(logx)^(2))=

Evaluate the following: int dx/(x{6(logx)^2+7logx+2})

int((x+1)(x+logx)^2)/xdx=

For x gt 0 , if int(logx)^(5)dx=x[A(logx)^(5)+B(logx)^(4)+C(logx)^(3)+D(logx)^(2)+E(logx)+F] +constant, then A+B+C+D+E+F =

int((x+1)(x+logx)^(2))/(x)dx=?